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ABSTRACT

VISION-BASED CONTROL AND FLIGHT OPTIMIZATION OF A

ROTORCRAFT UAV

David Hubbard

Department of Computer Science

Master of Science

A Rotorcraft UAV provides an ideal experimental platform for vision-based

navigation. This thesis describes the flight tests of the US Army PALACE project,

which implements Moravec’s pseudo-normalized correlation tracking algorithm. The

tracker uses the movement of the landing site in the camera, a laser range, and the

aircraft attitude from an IMU to estimate the relative motion of the UAV. The po-

sition estimate functions as a GPS equivalent to enable the rotorcraft to maneuver

without the aid of GPS. Flight tests were performed with obstacles and over concrete,

asphalt, and grass in daylight conditions with a safe landing area determined by a

separate method. The tracking algorithm and position estimation performance are

compared to GPS. Accurate time synchronization of the inputs to the position esti-

mation algorithm directly affect the closed-loop stability of the system, proportional

with altitude. By identifying the frequency response of each input and adding filters

to delay some of the inputs, the closed-loop system maintains stable flight above 18 m

above ground, where the system was unstable without the additional filters.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) offer significant advantages over manned

vehicles, mainly by eliminating the pilot and cockpit in the aircraft. This also be-

comes their biggest weakness, however. From single vehicles remotely piloted to

multi-UAV missions completed entirely autonomously, the greatest engineering chal-

lenges continue to stem from a lack of on-board capability on par with a piloted

aircraft. Tele-operated UAVs with a pilot on the ground must rely completely on

a communication link to the pilot, sometimes with a reduced situational awareness.

Alternatively, adding a certain degree of autonomy to the aircraft can increase the

capability of the UAV while decreasing its dependence on the operator. Ultimately,

full mission autonomy completely eliminates the need for a human in the loop, obvi-

ating the need for man-made landing sites and intervention in the event of in-flight

failures.

Fully autonomous flight may be defined various ways. Typically, the ability

to fly according to a flight plan represents sufficient autonomy that the operator

considers the UAV fully autonomous. At the end of the flight plan, the UAV might

loiter or land if so instructed. A new research area under consideration by the US

Army is UAV takeoff and landing from an unprepared site. This eliminates the need

for the runway or helipad, which enables a UAV to perform challenging new tasks

previously not possible even for a ground vehicle, such as:

• Forward Arming and Refueling Point (FARP) and precision resupply operations

• Rescue from hostile or disaster areas

1
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• UAV missions in highly urban areas where closely-spaced buildings and fences

prevent fixed-wing UAV or ground-based robot operations

• Site selection or preparation in remote, rugged, or treacherous terrain (e.g.

scientific work on ice shelfs or on other planets)

Naturally, a vertical takeoff or landing (VTOL) vehicle makes the landing

process much easier, since the UAV requires a smooth, level landing site only slightly

larger than itself. Additional advantages gained by having autonomous takeoff and

landing capabilities include:

• Automatic mitigation of in-flight failures (e.g. a fuel leak or loss of communi-

cations forces the UAV down)

• Automatic deployment and relocation of manned or unmanned aircraft

• Low-altitude surveys and real-time surveillance at sites without a priori infor-

mation about the site or nearby obstacles

• Ground loiter anywhere, greatly increasing endurance capability

• End-to-end mission autonomy for rotorcraft UAVs (allowing operation without

a trained pilot)

1.1 PALACE

The US Army Precision Autonomous Landing Adaptive Control Experiment

(PALACE) focuses on this specific aspect of UAV research. The PALACE project

has been described in detail in [1, 2]. To summarize, the PALACE project goals are

for a rotorcraft UAV to take off, navigate a preset course and land autonomously.

This thesis will only discuss the landing portion.

Since several conditions can render GPS unusable, the PALACE project uses

machine vision for terrain sensing and self-localization. The PALACE project also

includes an advanced model-following flight control system (FCS) with accurate flight-

identified dynamic models, sensor integration with smooth switching between GPS

2
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30 m AGL GPS Navigation
●Stereo ranging generates a terrain map
●Safe Landing Area Determination
●Start tracking selected landing point
●Descend along 60º glide slope

24 m ●Repeat SLAD to refine landing point
●Tracking continues from new point

18 m ●Repeat SLAD to refine landing point
●Tracking continues from new point

12 m Machine Vision Navigation
●Stereo verifies site is obstacle free
●Switch to machine vision localization

6 m ●Stereo verifies site is obstacle free

2 m Inertial Navigation
●Track ground height with sonar, laser
●Initiate final landing steps
●Switch to inertial navigation

Figure 1.1: A typical PALACE landing starts at 30 m AGL and proceeds downward
in 6 m increments. Navigation by machine vision operates from 12 m to 2 m AGL.

and vision-based waypoint control, and an on-board mission manager for decision

making and coordination of individual system components. A typical PALACE land-

ing follows the steps in Figure 1.1.

The choice of 30 m above ground as a starting point is somewhat arbitrary,

but based on the several navigation techniques used during the landing. Currently,

the Global Positioning System represents the de facto standard for positioning and

navigation. During normal flight operations, an aircraft must maintain a safe height

above the ground, which generally eliminates all interference so that a GPS signal

is particularly robust. A UAV that encounters GPS reception loss, perhaps from a

hostile GPS jammer, can simply climb out until a GPS signal returns. These types

of strategies make GPS navigation the method of choice for waypoint flying.

At some point though, the UAV will be instructed to land. Assuming it has a

good GPS signal, it may begin by hovering over the designated landing area. Then,

a safe landing area determination (SLAD) algorithm such as in [1] calculates the

optimal landing site within the UAV’s field of view. The 3D terrain map generated

by stereo ranging provides a good idea of what obstacles lie in the landing zone.

3
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Last GPS Position

Landing Point

Monocular Position Estimation (MPE)
1. Use GPS Position to estimate Landing Point R
R = GPS Position + relative offset of point

2. Track Landing Point in a monocular camera using 
JPL Tracking Algorithm

3. Compute Position Estimate E
E = R - updated relative offset of Landing Point

MPE Estimate

Figure 1.2: Monocular Position Estimation (MPE) initializes from GPS coordinates
and then observes the apparent motion in the camera of a stationary ground reference
point. From the camera motion and a laser range finder, the aircraft motion can be
estimated.

Mostly due to the characteristics of the stereo algorithm, further refinements on the

optimal landing site need to be made at 6 m increments during the descent. The UAV

follows a 60◦ glide slope, chosen for minor reasons such as the ease of backing out

of a landing, although preliminary testing of the PALACE landing at other descent

angles (e.g. 90◦) shows reasonable performance.

During the descent process, one of the PALACE project goals is to switch to a

vision-based self-localization mode. Machine vision using a passive sensor is ideal for

a GPS-denied landing, although it has known limitations such as daylight-only opera-

tion, and certain constraints on what patterns it can successfully track. A monocular

position estimation (MPE) algorithm provides the self localization replacement which

functions as a drop-in GPS replacement (see Figure 1.2 and Section 2.2.3 on page 26).

The typical landing procedure switches out GPS for MPE at 12 m AGL. Data

about the stability of the system led to this choice, although stable flight under MPE

control has been demonstrated at 30 m AGL.

4
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Figure 1.3: The Sierra Nevada Corporation UCARS-V2 system is used by the
Northrop-Grumman Firescout.

1.2 Other Approaches

Ever increasing use of UAVs for a broad range of applications in military and

civilian arenas continues to push the envelope of UAV capabilities. The following

UAV landing technologies achieve autonomous landings comparable to the PALACE

project, each using a slightly different approach. The PALACE project is the only

project to date to land autonomously at an unprepared site.

1.2.1 Sierra Nevada Corporation UCARS / TALS system

Sierra Nevada Corporation developed the UAV Common Automatic Recov-

ery System (UCARS), a millimeter-wave radar landing system used to guide a UAV

to a designated landing site. UCARS was first demonstrated on a Hunter UAV in

2002 [3], and UCARS and the follow-on Tactical Automatic Landing System (TALS)

are currently commercially available. Both have been used for numerous landings

in military settings and have a high success rate. The UCARS system was exten-

sively used on the Pioneer UAV, followed by the UCARS-V2 system now used on

the Northrop Grumman Fire Scout VTUAV (Figure 1.3) and the TALS system on

the AAI Shadow 200 UAV. In terms of reliability and widespread use, the UCARS

5
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Onboard Camera View:

Figure 1.4: The Berkeley Aerobot is an R-50 UAV that uses a designated target to
estimate its position.

system has a clear lead, only limited by the radar station which must be deployed at

the landing site before the landing.

1.2.2 Berkeley Aerobot

The University of California Berkeley operates six helicopters, with other

UAVs under development [4]. Using multi-view motion estimation, they have demon-

strated landing a Yamaha R-50 UAV at a designated landing target (Figure 1.4).

The landing target is a special case of the motion estimation problem because all the

feature points approximate a plane—a degenerate case where the generic eight-point

algorithm fails. However, an algorithm based on the homography constraint, which

explicitly relies on all the feature points lying in a plane, can estimate the UAV’s

position.

The multi-view algorithm resolves the scale ambiguity by using a landing target

of a known size. Then, using a linear algorithm to initialize a non-linear algorithm

(to reduce sensitivity to noise), the rotation and translation of the camera in each

image is recovered, accurate to 7 cm in translation and 4◦ in rotation. [5]

6



www.manaraa.com

Figure 1.5: The University of Southern California AVATAR lands on a helipad
marked with an H.

1.2.3 University of Southern California

The University of Southern California, under a grant from the JPL (Jet Propul-

sion Laboratory) Mobile Autonomous Robotics Software program, developed a sim-

ilar approach for landing a rotorcraft UAV using vision-based control in 2003. The

USC Autonomous Vehicle Aerial Tracking And Reconnaissance (AVATAR) operates

initially in Search Mode under GPS control until the vision algorithm identifies the

helipad, marked with an H. Once the system locates the helipad, it transitions to

vision-based control. The system uses sonar ranging to estimate its distance to the

ground. This allows it to operate without a GPS signal during the landing (Fig-

ure 1.5). The vision algorithm can robustly track the H symbol and land the UAV

within 40 cm of the center of the helipad, within 7◦ in orientation (average perfor-

mance over 14 flights) [6].

Additionally, landings were performed when the target was in motion. The

system still performed at similar accuracy levels (28 cm and 5◦ error during three flight

trials). Using a Kalman filter approach, the system estimated the target position and

planned a trajectory to descend toward the target [7].

7
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Figure 1.6: The Georgia Tech active contours algorithm has the ability to track a
target even when it moves through an occlusion.

Figure 1.7: The Georgia Tech rotorcraft UAV tracks a target to hold a position.

1.2.4 Georgia Tech

The Georgia Institute of Technology also has an UAV research program, with

both fixed-wing and rotorcraft UAVs. With a Yamaha R-MAX, Georgia Tech uses

combined vision and INS (Inertial Navigation System) data to control the rotorcraft

during hover [8]. They measure the position and orientation of the target, and close

a control loop around these measurements to maintain a hover at a position relative

to the target (Figure 1.7).

They use a novel approach in their vision system, which tracks contours in

the image (see Figure 1.6) using optical flow as an initial estimate of the contour

movement [9]. Further, they use a multi-scale grid for the gradient descent to resolve

the optical flow vector field. An extended Kalman filter estimates the contour motion

through occlusions. Each of these algorithms has been optimized to run in real time.

8
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Figure 1.8: The left and right images are the input to the JPL Safe Landing Area
Determination (SLAD) algorithm.

1.2.5 SLAD

The safe landing area determination (SLAD) algorithm developed at JPL op-

erates on 3D terrain data, computing the best landing site for the PALACE project.

A pair of stereo cameras or a scanning laser can provide the terrain data, trans-

formed to the world coordinate frame. The SLAD algorithm searches the terrain for

a smooth, level site large enough for the UAV to land on.

Figure 1.8 shows an obstacle field in the PALACE integrated simulation and

the operation of the SLAD algorithm. From a stereo pair of cameras, a stereo corre-

spondence algorithm generates a range map, shown in Figure 1.9. After transforming

the range map to world coordinates, and proceeding with the SLAD algorithm, the

result is a region in the image with enough space around it to allow the UAV to land.

The SLAD algorithm is used by the PALACE project to initiate an autonomous land-

ing, and has received extensive treatment in previous work [2]. This thesis studies

the performance of the UAV control system during the landing phase, after the safe

landing site has been selected.

1.3 Thesis Statement

This thesis addresses the problem of implementing a vision-based navigation

system in hardware. After showing the necessary implementation details to meet

9
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Figure 1.9: The SLAD safe area (right) is found in the range map (left) computed
from the stereo images.

real-time constraints and integrate sensors with various characteristics, such as the

frequency response and phase delay of each, the thesis presents the performance

analysis of the tracking and position estimation algorithms.

This thesis contributes to UAV research in several ways. By building on pre-

vious theses of the PALACE project, a final hardware demonstration is achieved.

About 30 successful autonomous landings are presented. This represents one of the

first rotorcraft UAV’s to land at an unprepared site. In addition, the thesis gives

requirements for successfully replacing a GPS sensor, the standard postioning sensor

for robots of all kinds. Meeting these requirements, though challenging, provides a

degree of robustness necessary in order for robotics to become an integrated part of

society.

1.4 Outline

Briefly, the rest of this thesis is in the following outline. Chapter 2 details

the facilities used to develop the vision-based navigation system, with a description

of hardware and software contributed by outside sources. Chapter 3 discusses the

implementation details used to meet the goals of real-time closed-loop operation.

10
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Prioritizing the available CPU time and computing expected MPE error aided in

designing the control loops. Chapter 4 demonstrates the results of the position es-

timation algorithm before closed-loop operation. The accuracy of the vision system

compares well with a GPS reference. Chapter 5 provides details from the closed-loop

operation of the system, engaging the vision-based navigation as the position refer-

ence for the flight control system. After closing the control loops, issues of timing

and separability become apparent. Chapter 6 reviews the conclusions reached and

the potential for future work.
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Chapter 2

Facilities

An extensive array of prior work has contributed to this thesis. The design of

the rotorcraft UAV and its flight control system by the Army Autonomous Rotorcraft

Project, the software for high-speed communication among processes, and the ground

station all provide the necessary development environment enabling closed-loop vision

research. An introduction to the facilities provides the necessary context for the

results of the vision algorithms. Additionally, a discussion of such key issues as

timing accuracy requires a complete picture of the system to be fully understood.

2.1 RMAX Flight System

2.1.1 The Autonomous Rotorcraft Project

The Army ARP (Autonomous Rotorcraft Project) at NASA Ames Research

Center has developed a complete UAV package on a Yamaha R-MAX, a popular

rotorcraft UAV platform. The Yamaha R-MAX has a payload capacity of around 60

lb and a maximum flight time of around 30 minutes. Yamaha R-MAX helicopters are

used in Japan for crop spraying operations with several INS/GPS solutions available

for experiments.

The R-MAX in its stock configuration comes with a radio transmitter, a built-

in control system that provides some yaw-rate damping and system diagnostics. The

built-in controller interfaces well with additional on-board control, providing critical

measurements such as pilot stick positions and engine speed. The ARP project outfits

the R-MAX with additional sensors for fuel level, engine temperature, and electrical

13
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Figure 2.1: The ARP project operates a Yamaha R-MAX UAV platform with a
high-precision digital IMU, differential GPS, ground height measurements from radar,
sonar, and laser, weight-on-wheels switches, and digital cameras for navigation by
machine vision algorithms.

diagnostics. A Crossbow IMU (Inertial Measurement Unit) and Ashtech Differential

GPS provide excellent attitude and position information. A downward-pointing sonar

and radar measure height above ground (See Figure 2.2). Weight-on-wheels switches

indicate when an autonomous landing is complete. In addition, three Point Grey

Flea cameras provide various video inputs, mounted on an articulated axis which can

point the cameras ahead or downward.

The ARP engineers have identified the full-state system response of the air-

craft and developed a simulation model for pre-flight validation of experiments. A

complete hardware-in-the-loop simulation is possible using the onboard CPUs to run

new software in a beta testing environment, including long test runs and possible

radio interference.

Although a safety pilot and safety officer always monitor the aircraft, the

ARP system performs all flight maneuvers, from takeoff to landing. A spline-based

path planning module directs the aircraft in waypoint maneuvers with numerous

parameters to control horizontal ground speed, vertical speed, angular rate, and the

physical limits of the actuators.

14
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Crossbow IMU

Radio Modems

Analog Inputs

PC104 Flight Computer

CompactPCI 
Experimentation Computer

Power Distribution

Sonar

Ashtech DGPS

Figure 2.2: The ARP project sensor payload offers an extensive sensor suite for
experimentation.
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2.1.2 Flight Control System

The R-MAX Flight Control System has five principal axes of motion: collec-

tive pitch control (which alters the angle of attack of the main rotor, controlling lift),

lateral and longitudinal pitch control (also known as cyclic pitch control, which con-

trols the aircraft roll and pitch rates), pedal (the tail rotor angle of attack to control

yaw rate), and throttle. The throttle and engine dynamics need some form of control

system to maintain sufficient rotor speed under varying loads. The ARP UAV uses a

model-following controller. The ARP flight control system reads the aircraft attitude

from the IMU and controls the actuators to maintain a desired attitude. Figure 2.3

shows a simplified diagram of the feedback loops, with the position control loop pro-

viding attitude commands to the attitude loop. Note that the position control loop

operates in a world reference frame, while the actuators affect attitude in the body

reference frame; thus the x and y command from the position loop must be rotated

by the aircraft heading.

As the inner attitude control loop moves the actuators, the aircraft tilts in

the desired direction; then the physics of lift and gravity, thrust and drag, move the

rotorcraft toward the desired position. The position control loop achieves both hover

and low-speed flight in any direction this way, using a white rabbit, a target position

which the aircraft follows around its desired path [10]. Even perturbations, such as

wind gusts or input from the safety pilot, are resisted by the system.

In Figure 2.3, the position of the aircraft is shown coming directly out of

the aircraft (G). This is somewhat unrealistic. The GPS receiver or the vision

system must measure the aircraft position. A more accurate diagram showing the

source of the position measurement under vision control is Figure 2.6 (page 26).

The position estimation system, whether GPS or an alternate, forms the basis for

successful navigation during a landing.

2.1.3 Experimentation Computer

The ARP flight control system implements all of the feedback loops shown in

Figure 2.3 digitally. For example, the attitude Kalman filter and attitude control loops

16



www.manaraa.com

RPM

Heading (ψ)

Position

Roll (φ)
Pitch (θ)

Throttle
Pedal

C
C

RPM Governor +

-

ψ cmd

Lateral

Longitudinal
C

C+

-

+

-

φ cmd
θ cmd

Attitude Control Loops (50 Hz)

Heading Rotation

+
-

Position 
cmd Position Control Loop (10 Hz)

Collective cmd

+

-

C Collective

G

x y-z

Heading (ψ)

Figure 2.3: The ARP control loops use feedback control to maintain the UAV position
and attitude. There are two loops operating at 50 Hz and 10 Hz. It is important to
maintain the separation of these loops, as discussed in Chapter 5.

run at a sample rate of 50 Hz, while the position filter and control loops update at 10

Hz. Image processing in vision algorithms requires a great deal of CPU time, and is

only required to operate at 10 Hz. Thus, the ARP system includes an experimentation

computer in addition to the flight computer to separate processing-intensive image

processing from time-sensitive digital control loops that directly affect the stability

of the UAV.

A two-CPU setup ensures that the control laws on the flight CPU maintain

critical operation in the feedback loop, even when experimental software on the other

CPU may cause unexpected behavior. Any rotorcraft UAV has inherent instability

which must be actively controlled to maintain nominal flight conditions. (A software

crash could precipitate a more serious crash.) The systems have separate busses, so

that the bandwidth-intensive video data does not compete with critical commands
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CPU 1 CPU 2

GPS, IMU

Critical System Functions
- Safety Override
- Monitors
- Kalman Filters

CPU-Intensive Processing
- Image Processing Algorithms
- Vision-Based Navigation
- Video Storage

Actuators

Cameras
Scanning

Lasers

Video
Downlink

Ground
Station

Figure 2.4: The ARP dual-CPU design isolates the functions of the critical control
system software from experimental software.

from the ground station or control data. Communication between the computers is

limited to a fast Ethernet connection (see Figure 2.4). The decision to attach the

scanning laser to the experimentation computer was made because the primary need

for the laser return is in the vision-based navigation algorithm. However, the laser

data is shared by both computers using the DOMS messaging software.

2.1.4 DOMS

DOMS, the Distributed Open Messaging System, was developed by the ARP

project as the communication layer between processes on the aircraft and the ground

station. DOMS distributes important system status messages from the several pro-

cesses on the aircraft CPUs to many monitoring processes on the ground. This ab-

straction, using a publish/subscribe metaphor, speeds up development time on such

a complex system. However, DOMS has some limitations which become significant

in the design of the MPE architecture.
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2.2 JPL Algorithms

Two JPL algorithms sit at the core of the vision-based navigation system. The

Förstner interest operator processes an image to find the strongest feature to track,

and the pseudo-normalized correlation function correlates an image from frame to

frame. These algorithms are quite useful, and JPL has the expertise in computer

vision to extensively test them, and identify their strengths and weaknesses.

2.2.1 Förstner Operator

To successfully identify an object on the ground in frame after frame, the vi-

sion system automatically identifies the strongest feature using the Förstner operator.

Sensor noise from the camera’s pixels or the finite resolution of the camera could make

near shades of gray and small translations impossible to distinguish; but seeking out

the strongest intensity gradients in the image maximizes the signal to noise ratio, a

familiar problem in sensor design. Roberts first used a feature detector, which ranks

pixels in the image on the steepness of the intensity gradient present [11]. Several vari-

ations of this concept like the Harris operator and the Kanade-Lucas-Tomasi (KLT)

operator find the maximum gradient of the intensity of the image, thus identifying the

strongest signals in the image. There are also multiple methods for approximating

the intensity gradient of a digital image I. The gradient is denoted by Ix and Iy.

(I is not continuous in x, y, or pixel intensity.) The Förstner algorithm uses 3-pixel

gradient functions.

Ix(x, y) = I(x− 1, y)− I(x + 1, y)

Iy(x, y) = I(x, y − 1)− I(x, y + 1)

The particularly important part of the Förstner interest operator [12] is the

matrix of second moments of the gradient at every point in the image, called a local

structure matrix, C(x, y).

C(x, y) =

 M2
xx M2

xy

M2
xy M2

yy

 (2.1)
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?

?

Figure 2.5: The aperture problem stems from the limited aperture, or field of view,
visible in each camera image. In the images on the left, the strongest intensity gradient
(a seam in the concrete) provides only one principal component of motion (roughly
a horizontal motion). It is ambiguous whether the seam has travelled vertically or
not. In the images on the right, with a larger aperture, both principal components of
motion can be seen.

The second moments are computed by defining a feature size, DF , which

roughly represents the amount of averaging performed to compute a good gradient

(See Algorithm 1). Reducing the feature size makes the Förstner algorithm more

sensitive to noise. For example, a 3-pixel gradient approximation uses DF = 1,

because DF is measured from the center pixel outward in both directions. DF > 7

is effective. As DF gets larger, values are more immune to noise by sampling more

gradients to compute the local structure matrix. However, the time required to

compute the local structure matrix increases as the square of DF . The Förstner

algorithm compares the x gradient to the y gradient by both the second moments

of each and the second moment of both taken together. The largest eigenvalue of

the local structure matrix C measures the strength of gradients in both x and y,

and the Förstner interest operator selects the point in the image with the largest

eigenvalue. This point is considered the most interesting because it has large gradients

(see Algorithm 1).
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Input:
W = Width of image (pixels)
H = Height of image (pixels)

DF = Feature size (pixels from center)
I0 = Image

1. For every point (x, y) in I0, compute the gradients Ix and Iy:
Ix = I0(x− 1, y)− I0(x + 1, y)
Iy = I0(x, y − 1)− I0(x, y + 1).

2. Compute the moments for a feature size DF and the local structure matrix C:
Mxx(x, y) =

∑DF /2
u=−DF /2

∑DF /2
v=−DF /2 [Ix(x + u, y + v)]2

Myy(x, y) =
∑DF /2

u=−DF /2

∑DF /2
v=−DF /2 [Iy(x + u, y + v)]2

Mxy(x, y) =
∑DF /2

u=−DF /2

∑DF /2
v=−DF /2 [Ix(x + u, y + v)Iy(x + u, y + v)]

C(x, y) =

[
Mxx Mxy

Mxy Myy

]
.

3. If C is singular, assign it a value 0. Otherwise, C has two eigenvalues:
λ1 = 1

2

(
Mxx + Myy +

√
4M2

xy + (Mxx −Myy)2
)
,

λ2 = 1
2

(
Mxx + Myy −

√
4M2

xy + (Mxx −Myy)2
)

Since λ1 > λ2, we need only use λ1 from every C(x, y) in the image to find
(x0, y0) = arg max(x,y)λ1.

Output:
(x0, y0) = Strongest feature in image

Algorithm 1: The Förstner Interest Operator
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During a landing, many large man-made objects are partially visible, which

means a sharp intensity edge could extend straight through the frame. This makes it

unwise to select the absolute strongest feature in the image for the tracking template.

The aperture problem ([13] page 193, [14]) causes motion parallel with the edge to be

undetectable, e.g. Figure 2.5 shows two views of concrete. The seam only provides

movement information orthogonally; movement along it cannot be measured because

it is the strongest feature in the image. There are smaller, less pronounced gradients

in the image that provide the information needed to reconstruct the camera motion,

but näıvely selecting the strongest feature introduces an unresolvable ambiguity. The

Förstner operator finds the strongest feature, the most interesting point in the image.

Intuitively, a strong corner has the strongest gradients in both x and y. This means

the Förstner operator will sometimes choose the maximum eigenvalue for a point on a

very strong gradient in just one axis, and thus encounter ambiguity from the aperture

problem. A process for addressing this condition is described in Section 4.1 (Page 45).

2.2.2 Correlation Algorithm

The pseudo-normalized correlation algorithm starts from the point selected by

the Förstner interest operator, and then tracks a small image piece from one video

frame to the next. At 10 Hz, an image from the camera is compared to the last

image, in which the navigation system knew the location of the point being tracked.

In the previous image, a small template window is captured. The PALACE landing

uses a template window of 21 × 21 pixels around the tracked point, balancing a low

computational cost with sufficient texture to follow the movements of the R-MAX at

30 m AGL or less.

The algorithm searches for the template window in the new image and a score

is assigned at each location. The most likely new position of the tracked point is

the highest-scoring point in the new image. The tracking algorithm chooses the best

coherence score, using the pseudo-normalized correlation defined by Moravec [15], and

thus computes the motion of the tracked point in the camera image. Naturally, the

scoring function determines what kinds of noise or camera effects have little effect
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on the global maximum in the image—and which effects completely bury the right

match within the local maxima of false positives elsewhere in the image. Since the

scoring function is related to the 2-D convolution, it matches images best when they

have only been shifted in x or y from the original image. If the new image is a

3-D affine transformation of the previous image, with rotation, scaling, or perspective

foreshortening, the score of the correct match will decrease. To prevent the score from

decreasing so far that a local maximum from a false positive captures the best score,

the tracking process should cycle as quickly as possible, reducing the magnitude of

all transformations.

After computing its location in the new frame, the template window is re-

placed with the small set of pixels from the new frame. It is the motion of the

template window from frame to frame that provides the estimate of the motion of

the aircraft, based on the assumption that the object in the template window has not

moved. However, the correlation algorithm has a very short memory. Every frame,

the template window gets replaced with the new best match. The algorithm can drift

from its original point, partially due to the discretization of the image into pixels. If

the algorithm cannot track the point (e.g. the point moved outside the camera’s field

of view), some other position in the image with the highest score is selected, which

introduces a discontinuity in the tracking. Chapter 6 discusses future work that could

reduce this form of error.

The correlation algorithm (Algorithm 2) uses a search window, instead of

searching the entire image. For a previous image IN−1 and a new image IN , the

correlation algorithm finds a new (xN , yN) from the previous (xN−1, yN−1). The cor-

relation algorithm searches a rectangular region in the new image, IN , centered around

the previous point (xN−1, yN−1). The best match becomes the new (xN , yN).

This is where the search window dimensions, SW and SH , are used. A larger

search window means the tracked object in the template window can move farther

and still be found. Typically, this movement stems more from the angular rates of the

aircraft than from translation of the aircraft. If the camera images are processed at

10 Hz, a search window of 61×61 pixels has been sufficient to find the template window
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in the new image. This corresponds to 610 pixels per second, or a maximum pitch rate

of 610 ∗ 0.421 = 256.59 rad
s

(one pixel sweeps approximately tan−1
(

480
1073

)
= 0.421rad

of pitch, for f = 1073 and a 640 × 480 image using the pinhole camera model).

The search window a(1...SW , 1...SH) is the region IN(xN−1− SW

2
...xN−1 + SW

2
, yN−1−

SH

2
...yN−1 + SH

2
).

The template window from the previous image IN−1 becomes b(1...TW , 1...TH),

which the correlation algorithm uses to search IN . The algorithm need only store the

pixels IN−1(xN−1− TW

2
...xN−1+

TW

2
, yN−1− TH

2
...yN−1+

TH

2
), defined as b(1...TW , 1...TH)

in preparation for the new image IN .

The algorithm by Moravec differs from standard Normalized Cross-Correlation

(NCC [16]) in several ways. Moravec’s paper [15] points out that the arithmetic mean

can replace the geometric mean, and uses the dominant terms only to find a pseudo-

normalized correlation. The definition of Normalized Cross-Correlation in [16] is

λ(u, v) =
Σx,y[a(x + u, y + v)− µa][b(x, y)− µb]√

Σx,y[a(x + u, y + v)− µa]2Σx,y[b(u, v)− µb]2
. (2.2)

Where µa is the mean of a (over the template) and µb is the mean of b. Note

that the terms in the denominator are variances, so if σb is the standard deviation of

b and σa(u,v) is the standard deviation of the region of a under the template, then

λ(u, v) =
Σx,y[a(x + u, y + v)− µa][b(u, v)− µb]√

σ2
a(u,v)σ

2
b

.

Moravec then uses the approximation

coherence(u, v) =

Σx,y [a(x + u, y + v)b(x, y)]

TW TH

− µaµb

σ2
a + σ2

b

2

. (2.3)

Note that the arithmetic mean replaces the geometric mean in the denomina-

tor, and the terms a(x + u, y + v)µb and b(x, y)µa are dropped from the numerator.

Moravec describes his approach in more detail in his paper [15]. He uses some opti-

mizations, but follows the basic algorithm detailed in Algorithm 2.
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Input:
(SW , SH) = Search window size (pixels)
(TW , TH) = Template window size (pixels)

a = Search window
b = Template window

1. Repeat over the search window a(u, v)
from a(1, 1) = IN(xN−1 − SW

2
, yN−1 − SH

2
)

to a(SW , SH) = IN(xN−1 + SW

2
, yN−1 + SH

2
)

2. Compute means and variances:

µa =
Σx,ya(u + x, y + v)

TW TH

σ2
a =

Σx,ya(u + x, v + y)2

TW TH
− µ2

a

µb =
Σx,yb(x, y)

TW TH

σ2
b =

Σx,yb(x, y)2

TW TH
− µ2

b

3. Compute the pseudo-normalized correlation score at (u, v):

coherence(u, v) =

Σx,y [a(x + u, y + v)b(x, y)]

TW TH

− µaµb

σ2
a + σ2

b

2

4. (xN , yN) = arg max(u,v)coherence(u, v)

Output:
(xN , yN) = position of best correlation match in search window (pixels)

Algorithm 2: Pseudo-Normalized Correlation
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Figure 2.6: The ARP control loops under MPE control function almost entirely
identically to those in Figure 2.3. However, the GPS sensor is replaced with the
tracking and MPE algorithms.

These two algorithms developed at JPL accomplish core image processing

tasks, essential to navigating solely under vision control. By first selecting the highest-

scoring point using the Förstner interest operator, and then following that target from

frame to frame with the pseudo-normalized correlation algorithm, the vision-based

navigation system can calculate the movement of the target in the camera. Assuming

the target remains stationary on the ground, this perceived movement is resolved as

movement of the camera, and is used to estimate the aircraft’s position.

2.2.3 Monocular Position Estimation

The product of the JPL tracking algorithms is a pixel location of a target in

image coordinates. The Monocular Position Estimation (MPE) algorithm transforms

this 2-D position into the 3-D position of the camera in world coordinates, which
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Last GPS Position

Landing Point

Monocular Position Estimation (MPE)
1. Use GPS Position to estimate Landing Point R
R = GPS Position + relative offset of point

2. Track Landing Point in a monocular camera using 
JPL Tracking Algorithm

3. Compute Position Estimate E
E = R - updated relative offset of Landing Point

MPE Estimate

Figure 2.7: Monocular Position Estimation (MPE) initializes from GPS coordinates
and then observes the apparent motion in the camera of a stationary ground reference
point. From the camera motion and a laser range finder, the aircraft motion can be
estimated (see Figure 1.2).

can replace the position reference provided by GPS for the control of the aircraft

(Figure 2.6). As long as the target remains in the camera’s field of view, the aircraft

can move about freely. This setup works well for an autonomous landing. The landing

point is selected in the image as the tracking target. Then, as the aircraft descends

toward the landing point, the target will remain in the camera’s view.

Figure 2.7 shows that any movement of the landing point is resolved as move-

ment of the aircraft. Initially, the Förstner algorithm is used to find a point to track

near the landing point. This point becomes the target tracked by the vision system.

A range to target is taken from the scanning laser, and using the aircraft attitude

data from the IMU, the coordinates of the target are saved as the ground reference.

This is step 1 in Figure 2.7. For step 2, the correlation algorithm finds a new target

location in pixel coordinates, and an updated position estimate is calculated with

new IMU and range data. In this way, by tracking the apparent motion of the target

in the camera image, MPE senses the aircraft’s position just as a GPS sensor would.

27



www.manaraa.com

Pinhole
(infinitesimally small) (P

X
, P

Y
, P

Z
)

Image Plane

(0,0)

(f·P
X
/P

Z
, f·P

Y
/P

Z
)

 f = Focal Length

Figure 2.8: The pinhole camera model demonstrates the projection of an object in
3-space onto the 2-D camera plane.

The derivation of Algorithms 3 and 4 for generating the ground reference point

and computing an updated position estimate start with the pinhole camera model. A

real camera with lenses has slightly different optical properties, but a pinhole model

is a fairly good approximation. The pinhole camera model (Figure 2.8) equates the

position of an object in 3-space (in camera coordinates) with the point on the image

plane in 2-D image coordinates where the object is projected by the optics of the

pinhole camera. All the light projected onto the image plane passes through an

infinitesimally small point and is rotated 180◦. Since the image plane is at the focal

length f behind the pinhole, the point (PX , PY , PZ) is projected onto the image plane

at (xI , yI)

 xI

yI

 =

 f ·PX

PZ

f ·PY

PZ

 . (2.4)

Equation 2.4 stems from the similar triangles in Figure 2.8. The triangle from

the pinhole to the image plane origin to (xI , 0, 0) is similar to the triangle from the

pinhole (0, 0, f) to (0, 0, PZ) to (PX , 0, PZ). The image plane origin is at a distance f
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Input:
(EG0, NG0, HG0) = Current camera position in the GPS reference frame

(UTM coordinates)
R0 = Distance reported by range sensor (meters)
M0 = 3× 3 transformation matrix giving camera orientation
W = Width of image (pixels)
H = Height of image (pixels)

(x0, y0) = position of ground reference in image I0 (pixels)

 ER

NR

HR

 =

 EG0

NG0

HG0

 + M0 ·


R0

f
(x0 − W

2
)

R0

f
(y0 − H

2
)

R0

 .

Output:
(ER, NR, HR) = Ground Reference (UTM coordinates)

Algorithm 3: Compute The Ground Reference, as developed in [17]

from the pinhole. The side PX is similar to xI , and PZ is similar to f . Thus xI = f ·PX

PZ

and similarly, yI = f ·PY

PZ
.

The algorithms that follow invert the operation of the pinhole camera. They

compute the point in 3-space given the point in the image plane. Inverting the

pinhole camera model is possible by introducing a range, RN , which directly measures

PZ . Then the equations for PX and PY follow from Equation 2.4, with the effect of

sampling the image indicated by the floor operator (bc).


PX

PY

PZ

 =


RN ·bxIc

f

RN ·byIc
f

RN

 . (2.5)

The ground reference point is computed using Equation 2.5. By inverting

the pinhole camera model, the coordinates of the ground reference point are trans-

formed from image coordinates (2-D) to 3-D coordinates in the camera reference

frame. Then they are transformed to world coordinates using the M0 transformation

matrix, which encodes the attitude and position of the camera as reported by the

IMU (see Algorithm 3).
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Input:
(ER, NR, HR) = Ground Reference in GPS reference frame

(UTM coordinates)
RN = Distance reported by range sensor (meters)
MN = 3× 3 transformation matrix giving camera orientation
W = Width of image (pixels)
H = Height of image (pixels)

(xN , yN) = Updated position of Ground Reference in the newest image IN

(pixels)

 EE

NE

HE

 =

 ER

NR

HR

−MN ·


RN

f
(xN − W

2
)

RN

f
(yN − H

2
)

RN

 .

Output:
(EE, NE, HE) = The position of the camera (UTM coordinates)

Algorithm 4: Compute The Updated Position Estimate, as developed in [17]

The updated position estimate is computed in the same manner. Algorithm 4

computes a new position estimate using the ground reference point (see E = R −X

in Figure 2.7 and Equation 2.5). Possible sources of noise and error come from the

correlation algorithm, which resolves only to the precision of one pixel in a discretized

image, and from the laser range finder. These sources of noise and their effect on the

accuracy of MPE are discussed in Chapter 3.

2.3 Integrated Full-Mission Simulation

The Real-time Interactive Prototype Technology Integration / Development

Environment (RIPTIDE) developed at NASA Ames Research Center provides the

simulation environment for the PALACE project. By simulating the vision algorithms

first, engineering time is saved by identifying and correcting most of the performance

issues before flight. Therefore, the first step toward a successful autonomous landing

is a full mission simulation. Previous work has demonstrated the key issues learned

from the RIPTIDE simulation [2].

The full-mission simulation uses RIPTIDE to generate OpenGL camera scenes

for the vision algorithm. The identified model of the aircraft and the control laws
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provides a realistic simulation of the aircraft dynamics. Real-time constraints thus

become apparent, and the simulation models effects of excessive time delay accurately.

The simulation provides an initial working knowledge of how the SLAD algo-

rithm should select a target landing site. Some testing of tracking performance is also

possible, with varying wind and turbulence values [18, 2].

2.4 Summary

These simulation tools, math models, image processing algorithms, and hard-

ware provide the necessary facilities to implement and test a vision-based navigation

system suitable for an autonomous landing. The JPL algorithms process camera

images captured by the ARP R-MAX and feed 2-D position data to the MPE algo-

rithms, which operate in the position loop just as a GPS receiver would. This thesis

contributes an analysis of different noise characteristics between MPE and GPS, and

the incremental error build-up inherent in the JPL tracking algorithm, in Chapter 4.

This thesis also discusses the frequency response of each of the sensors used by MPE,

leading to accurate time synchronization in Chapter 5. The limitations of the al-

gorithms, such as the possibility of a discontinuity in the tracking are future work,

discussed in Chapter 6.
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Chapter 3

Implementation

Continuing the presentation of the previous chapter, the software architecture

computes digital control responses within strict timing constraints and provides safety

measures that mitigate possible failures in operation. The properly designed archi-

tecture will quickly and accurately transfer data between the algorithms discussed in

Chapter 2, fulfilling all requirements imposed by the software without posing any ob-

stacles. Architecture design decisions, safety considerations, and limits of the digital

sensors are discussed in some detail in this chapter.

3.1 Architecture

The ARP R-MAX offers sufficient computing resources for vision-based navi-

gation. However, several significant challenges require design decisions before vision-

based navigation can control the R-MAX. The ARP control law implementation

smoothly transitions between various software position inputs (e.g. GPS and MPE).

The camera images captured by the experimentation CPU have various destinations,

all of which perform best with a real-time zero-copy implementation for low latency.

In order to actually land under vision-based control, capture of each of the sensory

inputs must occur as close as possible to the same instant. These inputs combine to

form the position estimate as long as the data points approximate a single point in

time. Using careful timestamping in the several processes on the ARP R-MAX, and

by scheduling the process priorities, the experimentation CPU can generate a reliable

and accurate position estimate.
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Figure 3.1: The ARP left and color camera are mounted on the left end of the
payload. The right stereo camera is mounted on the opposite side.

3.1.1 Camera Images

The ARP R-MAX offers three Point Grey FleaTM cameras on an IEEE 1394

Firewire-400 bus. The cameras automatically synchronize to each other on the bus,

so images from the cameras are taken at about the same time. Initial testing of

the acquired images showed about 100µs difference between the images. An external

trigger input is available on the cameras, and if the aircraft were moving at high

speed, an external trigger would practically eliminate that difference. For hovering

or low speeds, the automatic self-synchronization feature suffices.

The stereo images used as input to the safe landing area determination (SLAD)

algorithm require synchronized cameras. The first two cameras capture simultaneous

left and right images in a stereo pair (see Figure 3.1). Without simultaneous capture

of the images, the calibration of the cameras for the stereo results degrades signifi-

cantly when the aircraft is in motion. Although the design decisions made during the

34



www.manaraa.com

implementation stage take this requirement into consideration, this thesis does not

discuss SLAD performance. SLAD only autonomously provides the location of the

landing site and target for the tracking algorithm (see Section 1.2.5 on page 9).

The third camera captures a color image for live display at the ground station.

The ARP R-MAX uses two radio links, a radio modem and an IEEE 802.11g wireless

link to enforce separation of control commands and live video. The radio modem has

greater range and reliability, and is the link for DOMS messages. The flight CPU

with the FCS processes receives commands over this link. The experimentation CPU

transmits a motion-JPEG stream over the 802.11g link, but if some of the video is

dropped when the aircraft is operating at a distance from the ground station, the

video software can automatically recover.

In addition, a flash device captures images and state from the running vision

system. The vibration on board the R-MAX prevents the use of a normal hard disk, a

typical limitation of aviation storage devices, but a Flash device with a DMA-capable

IDE interface stores all the information necessary to reconstruct the operation of the

algorithm after a flight. Images in this thesis typically are drawn from this data

stream.

Figure 3.2 shows the four processes that use the video stream from the cam-

eras. Each process could potentially monopolize the experimentation CPU. A design

decision was made to prioritize the CPU time, and Figure 3.2 shows the time divi-

sions among the processes. The capture process has the simplest job, maintaining

the video buffer from which each of the other processes may read, reading from other

sensors such as the scanning laser, and monitoring the synchronization of the cam-

eras. (Occasionally, the Firewire bus causes the cameras to come out of sync. This is

flagged with a warning.) The capture process is named Sensors, and the cameras feed

frames into it at 30 Hz. The Sensors process is given hard real-time priority over all

other processes on the experimentation CPU, including priority over kernel processes.

This prevents delays that can stem from another process (such as the disk storage

process) which may flood the kernel with requests. Storing all the data generated by

the vision system requires a non-trivial amount of bus bandwidth and a high-speed
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Figure 3.2: The timing on the experimentation CPU must be carefully prioritized to
allow the position estimate to be computed at a steady 10 Hz.
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high-capacity storage device, but does not have to finish in real time, so Sensors does

not log data.

The vision navigation process receives second highest priority. This process,

called Tracking, must operate at 10 Hz to continuously provide updates to the Flight

Control System on the other CPU. Longer-running tasks, such as the stereo ranging

calculations for SLAD, fill in the unused CPU time after the tracking process has

completed. At the end of a tracking cycle, a second thread in Tracking lines up the

generated data in a queue and logs the system state to the disk. Since the kernel disk

driver uses the DMA (Direct Memory Access) controller and very little CPU, this

proceeds simultaneously with other processes.

The SLAD algorithm receives third priority, but is not always running. Only

when the operator requests a stereo analysis of the landing site, which happens pe-

riodically during a landing, the other lower-priority processes are suspended while

SLAD computes a safe landing site. When SLAD completes, all the low-priority pro-

cesses can resume in the unused CPU time, including Image TX, which compresses

raw video frames and transmits them to the ground station.

By scheduling each of the processes and using shared memory to access video

frames, the experimentation CPU operates at almost 100% utilization, yet important

timing deadlines like the output of the Tracking process to the flight CPU are always

met. The flight CPU sees a consistent 10 Hz position update, just as it would see

from a GPS receiver, and the experimentation CPU keeps a comprehensive log of all

the input and output used by vision system.

3.1.2 Mission Manager

The flight CPU only switches inputs to the vision-based navigation when the

vision system has operated within safe limits for two seconds (Figure 3.3). The

communication between the flight CPU and the experimentation CPU coordinates

when the FCS finally performs a smooth transition to the estimate provided by MPE.

In addition, the FCS sends GPS coordinates and IMU data (such as aircraft attitudes)

to the experimentation CPU.
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Switching Commands

Figure 3.3: The Mission Manager sends switching commands to the flight CPU.

A Mission Manager process on the experimentation CPU monitors the tracking

performance and sends the command to the flight CPU to switch modes. If an error

occurs during vision-based navigation, the Mission Manager can request a switch back

to GPS. If the flight CPU receives erratic position data (not at 10 Hz, or otherwise

outside safe limits, as discussed in Section 3.2), it will notify the Mission Manager

that it switched back to GPS.

The Mission Manager uses the GPS coordinates to initialize MPE with real

GPS data. MPE does not require an actual GPS position, but the comparison demon-

strates the accuracy of vision-based navigation. The Mission Manager stores GPS

data in the log with the MPE data for post-flight validation, but disregards GPS

after switching to MPE.
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Although the switching messages in Figure 3.3 use DOMS, the Tracking pro-

cess communicates with the flight CPU using UDP. This decision stems from a char-

acteristic 20-60 ms delay incurred by DOMS. Figure 3.2 shows that the Tracking

process outputs a position from MPE after around 40 ms, so an additional 60 ms

represents a significant delay. Even more important, the variability of the DOMS

message timing could cause unpredictable system behavior. Eliminating this delay in

the position control loop by bypassing DOMS and using a UDP socket instead allows

the system to behave predictably. The position loop has a lower, and more reliable

time delay (see Figure 2.6 on page 26).

3.1.3 Camera Accuracy

The JPL tracking algorithm in Section 2.2 finds the landing site location down

to a single pixel in the camera image. From Equation 2.5 (page 29), the equation for

inverting the pinhole camera model includes the floor operator


PX

PY

PZ

 =


RN ·bxIc

f

RN ·byIc
f

RN

 .

Because the JPL tracking algorithm is only accurate to a single pixel, the

return from the laser range finder, RN , affects the accuracy of the position estimate.

A larger RN means that the pixel (xI , yI) covers a larger area, and so the position

estimate is less accurate. The derivation of the noise caused by the floor operator

assumes that PX is independently, identically distributed with respect to xI , RN and

f , and from Equation 2.5 that PX falls in the range [bxIc, bxIc+ 1). The derivations

of the standard deviation of PX and PY are identical, so only the noise model for PX is

derived here. First, the expected values, E(PX) and E(P 2
X) are computed. Note that

this is a basic derivation of a uniform distribution through a linear transformation.
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The error from the floor operator is the difference between the truncated value

(x0) and the actual value (PX).

d = PX − RNx0

f
(3.1)

The mean of d (E(d)) and standard deviation of d are derived below.

E(d) =
∫ x0+1
x0

PX − RNx0

f
dx
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Or, in general terms, the mean and standard deviation of the error increase

linearly with RN (f being a constant).

3.1.4 Laser Range Finder

The ARP R-MAX has a Sick PLS-300 mounted on the nose. The Sick PLS-300

measures a sweep of laser range returns up to 320 m with 13 bit precision. The laser is

mounted vertically so that the sweep progresses from above the horizon downward to

the ground and past vertical. The laser is also tilted 27.2◦ above the aircraft level line.

By mounting the laser vertically, the vision software can select the laser return which

corresponds to the cameras’ tilt angle. The PALACE project points the cameras 60◦

down from horizontal, and the landing site is selected. Then the aircraft descends
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Figure 3.4: Laser measurement error increases proportionally with the distance of
the surface being measured. This graph plots the standard deviation of the error
for the three types of material the PALACE project used in experiments (concrete,
asphalt, and grass).

along the 60◦ glide slope, which keeps the landing point in view for the entire descent

(see Section 1.1). The laser return resolves the third unknown in the pinhole camera

model (Equation 2.5 on page 29).

The PALACE project configures the PLS-300 to return no data outside an

80 m range, which is plenty for a landing from a height of 30 m AGL. Thus, the 13

bits of precision measure ranges to the centimeter. Sick laser rangefinders are used in

many industrial and research robotics applications because of the rugged design and

excellent error characteristics. Using flight data from hover flights at altitudes up to

30 m above ground, Figure 3.4 demonstrates the standard deviation of a range value

reported by the Sick PLS-300. Data comes from flat surfaces of asphalt, concrete, and

grass. Laser measurements to a range of 50 m are collected as the Sick PLS-300 scans

from slightly behind the aircraft out to the horizon. By fitting a line with least square

error to find the ground plane, each range reported by the Sick PLS-300 becomes an
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error measurement. Atmospheric effects such as dust combine with erratic reflections

from rough surfaces, like asphalt and grass, to drive the margin of error up. However,

the laser range finder still provides very good data to 30 m above ground and higher.

The PALACE project primarily needs data over asphalt, where the ARP R-MAX

will land, and at a range of 30 m (the highest point in the PALACE mission) the

returns will be within 40% of a standard deviation. The value of RN is used directly

in Equation 2.5 for PX , so the noise on PX will be the same as for RN .

3.2 Safety Measures

Before switching to MPE, the Mission Manager allows the tracking algorithm

to run for 2 seconds and monitors the coherence function. If the coherence function is

high enough, the Mission Manager sends a request to the FCS to smoothly transition

to MPE. The FCS monitors the position signal from MPE, which it receives for 2

seconds before the switching command. If at any point the position estimate deviates

from 10 Hz, or indicates a change in position above a safe margin, the FCS assumes a

tracking discontinuity and switches back to GPS. The FCS also monitors its internal

performance with additional built-in safety measures if anything goes awry.

After the tracking algorithm begins operating, it monitors the tracked point,

and if the point moves too close to the edge of the camera image, it switches to

GPS. (It is impossible to track a point once it has gone off screen.) A safe soft abort

maneuver allows the Mission Manager to switch to GPS and move away from the

ground if a problem is detected while landing. The soft abort is a climb 5 meters

straight up. This way, the aircraft does not hover near the ground for very long.

As the aircraft approaches the ground, the laser range finder reaches a min-

imum signal strength below which it cannot compute the distance to the ground.

This typically happens at 0.7 m AGL. At higher altitudes, the asphalt may fail to

generate a laser return, but the MPE algorithm searches over a 3◦ range for a return.

If nothing is found, the software must soft abort. However, once the aircraft is below

1 m AGL, if the laser return is not received, the Mission Manager instructs the FCS

to perform an autonomous landing (which represents success). From about 1 m AGL,
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the FCS uses a sonar and inertial navigation computed from the IMU accelerometers

to set the aircraft down. Weight-on-wheels switches sense when the skids touch the

ground, and then the FCS stops the aircraft from flying.

These safety measures sufficiently address potential problems while the R-

MAX flies without GPS control. To develop the software and test these safety

measures, the position estimation algorithm was first operated in open loop mode

(Chapter 4). When sufficient data had been collected to justify feeding the position

estimate back to the FCS and actually disabling the GPS, a series of closed-loop tests

were performed which ultimately verified the time delay and real-time performance

of the system design (Chapter 5).
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Chapter 4

Position Estimation Performance

The JPL initialization and tracking algorithms introduced in Section 2.2 have

certain requirements for correct operation. The output of these algorithms feeds the

position estimation algorithm (Section 2.2.3 on page 26). This chapter presents hard-

ware tests to demonstrate acceptable performance of the initialization and tracking

algorithms and the conditions required to achieve successful tracking.

4.1 Initialization Performance

The first of the JPL algorithms uses the Förstner operator to select the point to

track. In this stage, the algorithm evaluates the landing surface texture for areas that

will give a good motion estimate. Some surfaces suffer from overexposure, appearing

washed out or completely white. Other surfaces, such as seams in concrete or lines of

paint also have too little surface texture relative to the strong linear gradient. The

Förstner operator primarily aims to avert the aperture problem (see Section 2.2.1 on

page 19).

However, the second JPL algorithm can perform poorly even when initialized

by the Förstner operator. If in the first 2 seconds of operation the correlation algo-

rithm (Section 2.2.2 on page 22) reports a failure, the system repeats the initialization

step to try again.

The field of view of the tracking camera offers plenty of room for the aircraft

to maneuver when high above the ground. When the aircraft is about to land, the

tracking camera allows for very little movement. Figure 4.1 shows a graphical repre-

sentation of the field of view of the camera in simulation. As the aircraft nears the
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Figure 4.1: The decreasing field of view as the aircraft nears the ground will restrict
its movement greatly. In the figure on the right, the aircraft hovers high above an
obstacle field (in simulation). The aircraft can track any landing site in the red-
hilighted field of view. In the figure on the left, the aircraft has selected the landing
site north of the crane. Now that the aircraft is near the ground, very little motion
in the field of view is possible before the target is out of sight.

ground, its movement is greatly restricted. The field of view expands outward from

the camera, forming a truncated pyramid. If the camera is near the ground, the JPL

tracking algorithm can only handle small movements before the tracked point has

completely left the camera’s field of view.

Since the landing is the most important part of the PALACE project, a mod-

ification made to the mission manager enables it to repeat the initialization process

during flight. If the tracked point moves too near the edge of the camera image, the

mission manager will choose a new point to track near the center of the image so that

the aircraft can move more freely while landing. The decision to use this technique

came after a consideration of the noise characteristics inherent in recalculating the

ground reference point mid-flight. Each time the initialization is repeated, the drift

error is incorporated into the ground reference point; therefore, by only reinitializing

once or twice near the end of the landing, this error is minimized.
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Figure 4.2: Simulation indicates an average of 20 pixels drift during a 120 s hover
flight. By repeating the 2 min hover multiple times at many altitudes, an average
drift rate can be estimated.

4.2 Tracker Drift

Drift refers to the cumulative rounding error from each iteration of the cor-

relation algorithm (Section 2.2.2 on page 22) which causes the position estimate to

gradually diverge from the original landing site. Drift originates in the camera image,

so it follows from Equation 2.5 that the noise and cumulative error are scaled by RN ,

the distance to the landing site measured by the laser range finder.

Figures 4.2 and 4.3 demonstrate simulation work that characterizes the drift

rates of the corelation algorithm over a 2 minute period. Simulation data shows a

drift rate of 20 pixels average (Figure 4.2) and 34 pixels maximum (Figure 4.3) over

2 minutes (1200 frames at 10 Hz). 30 runs are averaged in each data point. For

example, the maximum drift at 50 m AGL is the average of the maximum drift over

30 runs simulated with the UAV facing into the wind (V = 0◦), for an average of

2.28 m drift, and 30 runs simulated sideways (V = 90◦), for an average of 2.48 m

drift. Simulations used the Dryden wind model with gusts of varying intensity.
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Figure 4.3: Simulation indicates a maximum of 34 pixels drift during a 120 s hover
flight. By repeating the 2 min hover multiple times at many altitudes, an upper
bound on drift can be estimated. The drift process during a single flight is random,
but the largest deviation from the actual position of the UAV for each flight is used
to compute the maximum drift for various altitude and wind conditions.

These simulations all measure drift using the same texture; the simulation

design prevents the tracker from encountering tracking failures (such as a discontinuity

in tracking). Similar data gathered in flight over asphalt, concrete, and grass, confirms

that the drift rate in simulation is a reasonable figure. The flight data lacks the

exhaustive repetitions used in simulation to reduce the margin of error; however,

the simulation did not model all the sources of noise present in flight, as discussed

in Chapter 3. The flight data demonstrates more noise than simulation, but the

maximum observed drift rate is lower.

4.2.1 Tracker Drift In Flight

Flight data shows drift rates of at most 22.8 pixels (Figure 4.4). Table 4.1

on page 51 also shows the same data in detail, summarizing the drift rates over

three surfaces: concrete, asphalt, and grass. As mentioned previously, noise from the
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Figure 4.4: Flight data drifts less in 120 s than simulation data. (22.8 pixels in 120 s
is less than 34 pixels in 120 s.) Data points over concrete, asphalt, and grass are
plotted, along with an envelope for each type of surface. Multiple runs over asphalt
provide a range of drift measurements at 6, 12, and 18 m AGL. Multiple runs over
concrete at 30 m AGL provide a similar range.

laser range finder and the correlation algorithm increase linearly with altitude (see

Figures 4.5, 4.6, 4.7).

The drift process is not a monotonically increasing function. Drift in one

direction can be cancelled by drift in the opposite direction. Drift is also not a linear

process. Statistically, however, there is a greater deviation from the original point as

time passes; thus, to measure the amount of drift during a flight, at each point in

time (10 Hz) the vector from GPS to the position estimate is computed. A line is fit

to this set of vectors using a linear least-square fit. The 10 points farthest from the

line are recursively discarded while fitting the line. The 2-norm distance from the

initial and final points on this line gives the drift distance.
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When there is not 120 s of data for a flight, the drift in meters can be ex-

trapolated linearly to 120 s to provide a basis for comparison. None of these shorter

runs affected the maximum drift rate, which occured at 12 m AGL over asphalt and

had the equivalent of 22.8 pixels of drift (in Table 4.1, the drift is not extrapolated,

but the equivalent drift in pixels is; in Figure 4.4 the drift is extrapolated for ease

of comparison). If anything, such a linear extrapolation overestimates the amount of

drift for a flight.

4.3 Lighting

The Point Grey Flea cameras used by the PALACE project automatically

adjust to lighting conditions. For a vision project the automatic gain might introduce

variations and unpredictable behavior. Some tests were performed with the Flea

cameras set in a fixed-gain mode, but it was determined that the cameras operate

best when they can automatically adjust to lighting conditions.

The PALACE flights all occured out of doors in daytime lighting conditions,

sometimes in bright sunlight and sometimes in overcast conditions. Experiments in

indoor lighting showed that although vision algorithms could operate indoors, the

characteristics of the cameras would introduce unexpected behavior. The first effect

of low light would be motion blurring (see Figure 4.8). The CCD in the cameras

automatically adjusts the integration time from microseconds up to about a millisec-

ond. This is significant because the vibration of the UAV platform can change the

orientation of the camera in that much time, which causes blurring in the image. The

cameras are mounted on a vibration-isolated wing which reduces the angular motion

of the camera, but the entire UAV still translates with the vibration, and this can

be seen at low altitudes, even in daylight conditions. The images in Figure 4.8 were

taken at 0.5 m AGL. This is below the normal operating range of the vision algo-

rithms, and so does not effect the success of the PALACE project. However, indoor

lighting conditions would require a larger integration time by approximately a factor

of 10; then motion blur would be significant, especially since indoor spaces tend to

be smaller.
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Date AGL Surface Time (s) Drift (m) σ Equiv. Drift
Jul 12, 2005

30 m Concrete 120 s 0.4626 0.0635 10.882 pixels
10:53am
Aug 18,2005

30 m Concrete 120 s 0.6137 0.0810 14.438 pixels
09:49am
Oct 19, 2005

31 m Concrete 76.2 s 0.4802 0.0761 17.217 pixels
11:50am
Aug 18, 2005

19 m Concrete 120 s 0.0848 0.0581 3.152 pixels
09:52am
Sep 09, 2005

14 m Concrete 120 s 0.2346 0.0434 11.829 pixels
09:24am
Aug 18, 2005

12 m Concrete 34.3 s 0.0789 0.0227 16.229 pixels
09:32am
Sep 20, 2005

18 m Asphalt 120 s 0.3295 0.0507 12.917 pixels
09:30am
Nov 02, 2005

18 m Asphalt 120 s 0.1880 0.0541 7.373 pixels
09:26am
Sep 20, 2005

12 m Asphalt 120 s 0.1011 0.0325 5.945 pixels
09:21am
Oct 19, 2005

12 m Asphalt 120 s 0.2548 0.0289 14.986 pixels
10:50am
Oct 19, 2005

12 m Asphalt 120 s 0.3879 0.0481 22.812 pixels
10:57am
Nov 08, 2005

12 m Asphalt 120 s 0.1991 0.0354 11.710 pixels
11:24am
Sep 20, 2005

6 m Asphalt 120 s 0.0600 0.0218 7.057 pixels
09:26am
Oct 19, 2005

6 m Asphalt 120 s 0.0217 0.0176 2.560 pixels
11:05am
Oct 19, 2005

4.5 m Asphalt 120 s 0.0360 0.0152 5.650 pixels
11:09am
Oct 19, 2005

3.5 m Asphalt 120 s 0.0769 0.0164 15.497 pixels
11:12am
Oct 19, 2005

2 m Asphalt 120 s 0.0560 0.0224 19.770 pixels
11:17am
Nov 10, 2005

24 m Grass 107.6 s 0.0735 0.0793 2.411 pixels
10:45am
Nov 10, 2005

17 m Grass 72.1 s 0.2167 0.1711 14.971 pixels
10:53am

Table 4.1: Flight data shows a 22.8 pixel maximum drift rate.
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Figure 4.5: Position estimation over concrete shows a gradually increasing drift, and
a zero-mean noise proportional with altitude.
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Figure 4.6: Position estimation over asphalt shows a gradually increasing drift, and
a zero-mean noise proportional with altitude.
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Figure 4.7: Position estimation over grass shows a gradually increasing drift, and a
zero-mean noise proportional with altitude.
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Frame 4465 (blurred) Frame 4482

Figure 4.8: Motion blur occurs in daylight conditions below 0.5 m AGL. In artificial
lighting, motion blur occurs at larger distances. Motion blur can quickly degrade
tracking performance.

Motion blur adversely effects the tracking algorithm because it blurs away the

small details which the tracking algorithm uses to follow the movement in the image.

The algorithm compensates for the mean brightness in the image, so general changes

in brightness are not a factor in tracking performance. But the tracking algorithm

uses the image texture to estimate the image motion.

The automatic gain control algorithm in the Flea cameras produces another

effect. The algorithm increases the integration time and gain until a few of the pixels

captured by the camera are at maximum intensity (255). This way, the dynamic

range of the image is not lost. But the response of the CCD near full saturation

is somewhat nonlinear, and the pixels around the brightest spots in the image do

not have sufficient texture for the tracking algorithm. This loss of information in

areas that might otherwise have been effective areas to track degrades the overall

performance of the tracking algorithm. Initial experiments that program the gain

and integration time of the cameras to fixed values show that these brightest points

were selected by the Förstner Interest Operator (Section 2.2.1) as good points to

track.
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Frame 311 (rotor, body shadow visible) Frame 312 (body shadow visible)

Figure 4.9: Shadows affect tracking performance. Near the ground, the shadow cast
by the UAV interferes with the tracking algorithm, even when navigating to minimize
the amount of shadow visible by the cameras.

A third effect related to lighting occurs when the UAV nears the ground. By

calculating the position of the sun and wind conditions, the UAV’s shadow can be de-

liberately placed out of the way while landing. This assumes that the UAV has some

freedom to approach the landing site from any direction. However, once the UAV

nears the ground, its shadow might cross the image (see Figure 4.9). Because the

shadow is dark enough, the tracker becomes confused by the intensity gradient and

drifts from the original tracking point. This effect occurs very close to the ground, so

the UAV has already transitioned to inertial navigation (integrating the accelerome-

ters to estimate position) and will not be affected. However, the effect of the shadow

is magnified by the limited dynamic range of the CCD sensor.

4.4 Conclusions

This chapter provides insight into the operation of the vision-based navigation

system and how closely it compares to a GPS sensor. Simulation and flight data

provide evidence that the system can operate over the duration of an autonomous

landing.
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Several limitations of the system could become future research topics. Con-

trolling the automatic gain and integration time of the CCD would show modest

improvements by reducing the drift rate and incidence of tracking discontinuities.

Working around the limitations of CCD cameras could expand the flight conditions

where the UAV would successfully land to include low light conditions and landing

paths where the UAV’s shadow might interfere. Integrating night vision cameras

would allow operation in extreme low-light conditions, though the sensors would pick

up more interference in the image and might require larger a template window. An

automatic transition could be developed to enable the night-vision mode when the

ambient light is low. New CMOS cameras also have a much better signal to noise ratio

in low-light conditions and have an exponential response to light intensity, reducing

the need for automatic gain controls and the effect of shadows. A measurement of

the sharpness of a shadow or the intensity of a backlight could quantify the effect of

shadows on tracking performance, leading to a more formalized system of evaluating

UAV tracking performance.
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Chapter 5

Closed-Loop Results

This chapter builds on the tracking results of Chapter 4 by showing the impor-

tance of synchronizing the separate pieces of the vision-based navigation system. In

simulation and in flight, the time synchronization and accurate identification of inher-

ent delays proved the key to achieving the PALACE goal of autonomous navigation

to the landing point. Slight variations in time synchronization are not immediately

obvious in open loop hover tests, such as preformed in Chapter 4, and only show up in

closed-loop operation. Because the PALACE approach fuses the data from multiple

sensors, accurate identification of the frequency response and phase delay of each sen-

sor, so that the sensor inputs have an appropriate transformation to compensate for

their response characteristics, significantly improves lateral and longitudinal stability

of the control system. The MPE algorithm then performs close to GPS levels.

5.1 Modeling Time Delays

The full-mission simulation (Section 2.3 on page 30) demonstrated the im-

portance of good synchronization between processes. Initial work on the vision-based

navigation had errors in synchronization with the RIPTIDE environment which could

cause the tracking algorithm to use old attitude information. The effect was instabil-

ity when the simulation operated in closed-loop mode at 18 m AGL or higher.

Formally, the inner and outer loops of the control system should be indepen-

dent of each other. The inner loop samples data at 50 Hz, while the outer loop

samples at 10 Hz (Figure 2.6 on page 26). However, the monocular position estima-

tion algorithm uses the pinhole camera model to estimate position. The camera takes
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measurements relative to the aircraft, which makes it necessary to rotate the results

using the attitude at the time the image was taken to obtain a position estimate in

the world reference frame. The initial simulation results demonstrated instability

by using attitude measurements with an induced delay, which was not consistent

with the rotation in the simulated camera image. The position control is robust to

a phase delay on the order of hundreds of milliseconds, due to its longer response

time. However, the result of the position loop calculations is fed into the attitude

loop. The attitude loop is more sensitive to a delayed, fed-back signal. The attitude

loop becomes unstable when the delay is magnified by about 18 m (see Equation 2.5

on page 29) and the R-UAV oscillates out of control. Attitude should not enter the

attitude loop through the slower position loop, or through a delay caused by poorly

synchronized attitude measurements used in the MPE algorithm. The attitude loop

is designed to operate independently of position.

In the same vein, the SiCK PLS-300 laser measurement may also have a delay.

The Flea cameras are the least delay-prone, operating at 30 Hz (so the CCD sensor

will integrate for 33 ms at most, but this value is typically around 1 ms in daylight

conditions). The fast camera response becomes advantageous because the tracking

algorithm can complete its operations in about 10 ms. If any of the other two sensors

(laser or IMU) is delayed by more than 10 ms, the tracking algorithm is no longer the

principal source of delay in computing the position estimate. This implies that the

MPE algorithm is not CPU-bound, and that more CPU-intensive tracking algorithms

could be used without any degradation in closed-loop performance.

5.2 Stability Margins

By simulating the aircraft in the RIPTIDE simulator, it becomes possible

to visualize the effects of altitude and poor synchronization on the stability of the

attitude control loop. The lateral and longitudinal cyclic control axes are the most

sensitive to MPE error, so performance metrics for these axes (Figure 5.1) are used

to demonstrate the overall system stability.
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Figure 5.1: Sweeps of the lateral and longitudinal cyclic actuators performed in
simulation give insight into the effect of increasing altitude on the stability of the
system. Even well-synchronized attitude information is not perfect. GPS control is
not affected by altitude in simulation. The simulation at 54 m AGL produces a lateral
phase margin of 48.09◦ at 2.81 rad/s and gain margin of 8.26 dB at 8.67 rad/s. The
longitudinal phase margin is 44.97◦ at 2.81 rad/s, and the longitudinal gain margin
is 8.91 dB at 8.07 rad/s.

61



www.manaraa.com

Figure 5.1 gives plots for lateral and longitudinal control sweeps performed in

the RIPTIDE simulator in closed-loop MPE mode, and compares it side-by-side with

perfect information as might be received in GPS mode. The control loops are broken

at the actuator, the final output of the control law. A sweep provides useful informa-

tion in several ways. The sweep function starts with a low-frequency sine wave and

gradually increases until the sine wave is well above the observed natural frequencies

of the aircraft (see Section 5.2.1). This function is added to the control loop at the

point where the loop is broken, in this case at the actuator. The sweep generates

the transfer function of the system which can be analyzed by a frequency response

tool such as CIFER [19] (Comprehensive Identification of Frequency Response). The

system is considered marginally stable when the gain and phase margin are positive,

and acceptable levels of stability are around a phase margin of 45◦ for lateral and

longitudinal response of the aircraft.

In Table 5.1, step-by-step simulation of synchronized and delayed attitude data

in closed-loop MPE mode demonstrate the diminishing stability margins caused by

poor synchronization. The MPE data with a 100 ms delay becomes unstable above

18 m AGL.

Thus motivated, experiments with the R-MAX UAV demonstrated the neces-

sity of identifying the frequency response for each sensor. There are several methods

for performing a frequency sweep. First, a sweep signal was induced on the aircraft

on the ground and sensor data was collected from the camera, the laser, and the IMU.

(These are the inputs to the MPE algorithm.) Figure 5.2 correlates the camera to

the laser. Both report the pitch of the aircraft without any delay. Figure 5.3 (camera

vs. IMU) and Figure 5.4 (laser vs. IMU) show the IMU reporting data 44 ms late.

This data is further supported by in-flight sweeps. The sweep is added to the

actuator command in software, and the data is collected for later analysis in CIFER.

Figure 5.5 compares the performance of the aircraft (lateral control) without any

correction for the delay of the IMU data and with a 43 ms delay added to camera

and laser data to agree with IMU data. Figure 5.6 compares the longitudinal control

without any correction and with a 43 ms correction. As seen in the figures, and as
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Lateral Lateral Longitudinal Longitudinal
AGL Delay Phase Margin Gain Margin Phase Margin Gain Margin
6 m 0 ms 47.37◦ 8.60 dB 43.20◦ 9.42 dB

at 2.81 rad
s

at 8.83 rad
s

at 2.65 rad
s

at 8.26 rad
s

12 m 0 ms 45.25◦ 9.00 dB 42.45◦ 10.15 dB
at 2.60 rad

s
at 8.94 rad

s
at 2.53 rad

s
at 8.39 rad

s

18 m 0 ms 44.05◦ 9.45 dB 41.23◦ 10.60 dB
at 2.65 rad

s
at 9.10 rad

s
at 2.67 rad

s
at 8.49 rad

s

24 m 0 ms 44.02◦ 9.73 dB 38.15◦ 11.17 dB
at 2.59 rad

s
at 9.18 rad

s
at 2.53 rad

s
at 8.61 rad

s

30 m 0 ms 42.56◦ 10.69 dB 36.91◦ 12.23 dB
at 2.54 rad

s
at 9.59 rad

s
at 2.31 rad

s
at 9.48 rad

s

36 m 0 ms 35.04◦ 10.73 dB 31.92◦ 13.04 dB
at 2.47 rad

s
at 9.62 rad

s
at 2.32 rad

s
at 9.31 rad

s

42 m 0 ms 32.77◦ 10.97 dB 28.80◦ 13.33 dB
at 2.53 rad

s
at 9.65 rad

s
at 2.39 rad

s
at 9.63 rad

s

48 m 0 ms 30.86◦ 11.90 dB 28.00◦ 13.69 dB
at 2.46 rad

s
at 10.22 rad

s
at 2.28 rad

s
at 10.17 rad

s

54 m 0 ms 28.76◦ 11.07 dB 29.51◦ 13.48 dB
at 2.19 rad

s
at 9.68 rad

s
at 2.35 rad

s
at 9.47 rad

s

6 m 100 ms 39.54◦ 9.91 dB 36.14◦ 11.59 dB
at 2.31 rad

s
at 9.92 rad

s
at 2.37 rad

s
at 9.57 rad

s

9 m 100 ms 32.67◦ 10.36 dB 31.45◦ 12.22 dB
at 2.29 rad

s
at 10.44 rad

s
at 2.29 rad

s
at 10.21 rad

s

12 m 100 ms 27.38◦ 10.43 dB 22.21◦ 12.29 dB
at 2.27 rad

s
at 11.05 rad

s
at 2.15 rad

s
at 10.88 rad

s

15 m 100 ms 24.06◦ 10.18 dB 19.46◦ 11.79 dB
at 2.22 rad

s
at 11.38 rad

s
at 2.16 rad

s
at 11.32 rad

s

18 m 100 ms 14.72◦ 9.71 dB 11.66◦ 11.27 dB
at 2.17 rad

s
at 11.65 rad

s
at 2.20 rad

s
at 11.76 rad

s

Table 5.1: Sweeps of the lateral and longitudinal cyclic actuators performed in
simulation under MPE control give insight into the effect of increasing altitude on
the stability of the system. If the attitude information is correctly synchronized, the
effect is minimal. When the attitude information is poorly synchronized, the effect
of altitude becomes very significant.
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CIFER(R) v4.2.00
Mar 28 12:16 2006
AIRCRAFT: Tracking
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Figure 5.2: A sweep on the pitch axis comparing the camera and the laser sensor
shows a flat gain and phase curve, indicating no delay between the two sensors. The
camera has 2.7 dB more gain due to its field of view.
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Figure 5.3: A sweep on the pitch axis comparing the camera and the IMU shows a
gain and phase curve consistent with a 44 ms delay.
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Figure 5.4: A sweep on the pitch axis comparing the laser and the IMU shows a gain
and phase curve consistent with a 44 ms delay.
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Figure 5.5: A sweep of the lateral cyclic control without any attitude correction
(top) demonstrates a borderline stability margin (17.01◦ at 2.63 rad

s
) when the MPE

algorithm is in closed-loop mode. The bottom figure shows the same type of sweep
with the 43 ms attitude correction added to correctly synchronize the inputs to the
MPE algorithm. Its stability margin (38.50◦ at 2.78 rad

s
) is close to GPS levels.
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Figure 5.6: A sweep of the longitudinal cyclic control without any attitude correction
(top) demonstrates a borderline stability margin (20.70◦ at 2.54 rad

s
) when the MPE

algorithm is in closed-loop mode. The bottom figure shows the same type of sweep
with the 43 ms attitude correction added to correctly synchronize the inputs to the
MPE algorithm. Its stability margin (32.68◦ at 2.33 rad

s
) is close to GPS levels.
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Lateral Lateral Longitudinal Longitudinal
Phase Margin Gain Margin Phase Margin Gain Margin

Simulation 45.84◦ 8.37 dB 44.39◦ 8.86 dB
using GPS at 2.92 rad

s
at 8.80 rad

s
at 2.79 rad

s
at 8.05 rad

s

GPS Flight 26.67◦ 6.91 dB 27.35◦ 6.83 dB
at 3.21 rad

s
at 6.24 rad

s
at 2.73 rad

s
at 5.65 rad

s

MPE Flight 17.01◦ 6.88 dB 20.70◦ 6.14 dB
w/o correction at 2.63 rad

s
at 4.09 rad

s
at 2.54 rad

s
at 3.98 rad

s

MPE Flight 38.50◦ 8.53 dB 32.68◦ 7.96 dB
w/43 ms correction at 2.78 rad

s
at 7.66 rad

s
at 2.33 rad

s
at 6.16 rad

s

Table 5.2: Sweeps of lateral and longitudinal actuators in simulation and flight,
comparing GPS to MPE with and without a 43 ms correction to attitude information,
show that the MPE stability margins are as good as GPS when all inputs to the MPE
algorithm are correctly synchronized.

summarized in Table 5.2, the results are uniformly positive. By correctly identifying

the response of each of the sensors and synchronizing the input to the MPE algorithm,

the system is stable and MPE performs as well as GPS.

5.2.1 Power Spectrum

Another way of visualizing the change affected by adding 43 ms delay to the

camera and laser data is to look at the power spectrum of the flight control loops. The

aircraft has a natural frequency at which the peak energy is seen on the frequency

plot. Essentially, this is the frequency at which the UAV has its dominant mode,

or resonant frequency. Figures 5.7 and 5.8 show the power spectrum of each cyclic

actuator before and after the 43 ms correction. The feedback caused by incorrectly

cancelling the attitude in the MPE algorithm produces a peak in the frequency plot

which represents the instability and oscillations of the system.

5.3 Closed-Loop Performance

The two-CPU configuration (Section 2.1 on page 13) is designed to precisely

synchronize the clocks of each CPU using NTP (Network Time Protocol). This

allows software on the experimentation CPU to synchronize attitude information
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Figure 5.7: The lateral cyclic actuator plotted in the frequency domain demonstrates
the improved stability gained by synchronizing the inputs to the MPE algorithm.
At crossover (around 3 rad

s
), where the control system has a resonant frequency, the

system generates significantly less energy (i.e. oscillation) when the 43 ms correction
is added.
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Figure 5.8: The longitudinal cyclic actuator plotted in the frequency domain also
demonstrates the improved stability gained by synchronizing the inputs to the MPE
algorithm.

from the flight CPU using its internal clock. Experiments with artificial clock errors

demonstrate that this can cause instability at moderate altitude (18 m AGL) just as

a lack of synchronization can.

When the system operates in closed-loop mode, and the aircraft tracks the

position output of the MPE algorithm, one accuracy metric is to compare the MPE

coordinates with GPS coordinates. The GPS receiver continues to operate during

MPE closed-loop mode, though GPS data is not used to navigate. Just as in open-

loop mode, the difference between the GPS position and the MPE estimate provides

a metric on how much the tracking algorithm has drifted. Even if the aircraft is

under MPE control, the measurement is as valid as when the aircraft is controlled

by GPS. In GPS open-loop mode, the difference measures the amount of drift in

the MPE estimate directly. In MPE closed-loop mode, the difference measures the

drift indirectly by measuring the GPS position that is offset from the perceived MPE

estimate, while the aircraft holds the position reported by MPE.
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5.4 Landing Accuracy

One PALACE project goal is to achieve a high success rate for landings. Ta-

ble 5.3 lists 16 landings performed. Two of the landings (both on 27 Jan 2006) did

not run to completion. That is an 87.5% success rate. January 27 was the demonstra-

tion day for the PALACE project, and numerous observers were on site. At 1:15 the

normal aircraft motion was enough to move the tracked point outside the camera’s

field of view while hovering at 2 m AGL (see Section 4.1 on page 45). At 1:48, the

safety pilot stopped the landing at 1 m AGL, after MPE had successfully completed

its portion of the landing and the aircraft was performing the final landing stages.

The safety pilot chose to terminate the landing because the UAV was near a card-

board obstacle, directly behind the UAV from the safety pilot’s line of sight. This

made the situation particularly risky. Overall, the number of successful landings can

be attributed to the robustness of the vision-guided navigation system.

The drift measurement presented in Table 5.3 represents the cumulative drift

for the duration of MPE operation. Since the mission manager reinitializes the MPE

algorithm during flight (for instance, when new stereo range data improves on the

landing point selection) the MPE algorithm is initialized again from the GPS. Instead

of using the final position reported by MPE compared to GPS, which would assume

there was zero drift before reinitialization, it is necessary to compute a drift vector

before the mission manager reinitializes MPE. Then at the end of the flight, each drift

vector computed at reinitialization is added to the final difference between MPE and

GPS. The total drift does not exceed the maximum drift from simulation or open-loop

flight (Section 4.2), but the limited number of flights does not represent an exhaustive

analysis of drift characteristics.

5.5 Conclusions

This chapter demonstrates the performance of the vision-baed navigation sys-

tem when the control loops are closed and the UAV flight depends on the system

to function correctly. Frequency response analysis shows that the MPE algorithm is

capable of functioning with as good stability margins as GPS. In fact, there is no
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Date Time Surface Delay Duration MPE drift
23 Nov 2005 9:31 AM Asphalt None 438.3 s 0.65 m
23 Nov 2005 9:57 AM Asphalt None 365.6 s 0.93 m
23 Nov 2005 10:26 AM Asphalt None 477.6 s 0.64 m
15 Dec 2005 9:55 AM Asphalt None 285.9 s 0.63 m
15 Dec 2005 10:47 AM Asphalt None 337.4 s 1.12 m
15 Dec 2005 11:43 AM Asphalt None 382.0 s 0.62 m
12 Jan 2006 11:43 AM Asphalt None 357.1 s 0.52 m
20 Jan 2006 11:10 AM Gravel None 357.4 s 0.40 m
20 Jan 2006 10:52 AM Gravel 43 ms 306.8 s 0.68 m
24 Jan 2006 9:46 AM Gravel 43 ms 486.2 s 0.71 m
24 Jan 2006 10:41 AM Gravel 43 ms 310.6 s 0.88 m
25 Jan 2006 9:37 AM Gravel 43 ms 327.4 s 0.54 m
25 Jan 2006 10:21 AM Gravel 43 ms 301.8 s 0.71 m
25 Jan 2006 10:40 AM Gravel 43 ms 300.4 s 0.28 m
27 Jan 2006 1:15 PM Gravel 43 ms 251.4 s 0.79 m
27 Jan 2006 1:48 PM Gravel 43 ms 321.6 s 0.65 m

Table 5.3: Data from 16 landings shows the accuracy of the MPE algorithm.

practical limitation on the bandwidth of the MPE algorithm. The limiting factors

are the bandwidth of the input sensors (camera, laser, and IMU), and, to a lesser

degree, the processing time required by the tracking algorithm (10 ms).

Although the MPE algorithm has been tested in a closed-loop hover at 30 m

AGL, the landing procedure was designed with the 18 m AGL ceiling in mind to pro-

tect against the potential instability caused by poorly synchronized sensors. Further

research in the use of the MPE algorithm may be able to raise its operational ceiling

to as much as 50 m AGL.
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Chapter 6

Conclusions

The PALACE project successfully demonstrated an autonomous landing at an

unprepared site on January 27, 2006. The vision-based navigation system provides

an effective GPS replacement with stability margins close to those of the GPS sensor.

The ability to land at an unprepared site without the aid of GPS represents a novel

solution to the self-localization problem. This expands the types of autonomous mis-

sions a rotorcraft UAV can accomplish to include difficult and dangerous operations

in regions with unknown terrain.

6.1 Contributions

This vision-based navigation research offers several significant contributions

to the field of robotics, including the field testing, the accuracy data, and the work

to achieve GPS-level stability margins. By demonstrating autonomous landing at

an unprepared site with an 87.5% success rate, the MPE algorithm achieves a track

record that should qualify it for consideration in future robotics projects. Extensive

field testing over varied terrain provides performance data useful for implementing

vision-based navigation systems.

The tracking drift measured in simulation and in flight forms a baseline metric

for tracking system performance. Researchers can compare and contrast different

tracking methods and hardware solutions in real-world flight conditions based on the

data presented. The tracking algorithm operates with sufficient accuracy to allow an

R-UAV to navigate to a landing site without drifting outside the chosen landing area.
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The effective bandwidth of the MPE algorithm is only limited by the band-

width of the sensors it needs (camera, laser range finder, and IMU). The improvement

in closed-loop performance by accurately identifying the frequency response charac-

teristics of each sensor serves as a reminder of the importance of time synchronization

and frequency response analysis for control systems.

These contributions become especially important when applying vision-based

navigation techniques on a UAV. By seeking to operate at similar stability margins

and accuracy levels as GPS, the vision system becomes an effective GPS replace-

ment for added system reliability, especially in environments where GPS may not be

available.

6.2 Equipment Limitations

Several limitations in the equipment used in the PALACE project had a sig-

nificant effect on the design of the experiment. In Section 3.2, the SiCK PLS-300

laser range finder does not measure distances below 0.7 m. In addition, the limited

field of view in the camera at low altitude increases the probability of tracking failure

below about 2 m AGL (Section 4.1).

Several other camera limitations related to lighting (Section 4.3) also affect the

experiments. Camera noise and motion blur increase in low light conditions. Even

restricted to daylight conditions, the flight tests have motion blur below 0.5 m AGL.

6.3 Software Limitations

Additional limitations exist in the algorithms used. Although in the ideal case

the MPE algorithm has unlimited bandwidth and precision, the error incident to

rounding the position estimate to a camera pixel leads to increasing noise at higher

altitudes. Closed-loop MPE control has only been tested up to 30 m AGL in flight. In

simulation, MPE control is stable up to about 50 m AGL (Section 5.5). The tracking

algorithm does not perform well when the UAV’s shadow moves across the landing

site (Section 4.3). Large man-made objects that are visible through the whole camera
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image can also produce a high-ranking interest points where the tracking algorithm

fails due to the aperture problem (Section 2.2.1).

6.4 Future Work

As discussed in Section 4.4, the automatic gain and integration time of the

CCD would help reduce the drift and tracking discontinuities. Situations involving

low lighting or landing paths where the UAV’s shadow interferes with tracking would

benefit from a camera with an exponential response curve (such as some CMOS

cameras). Work with night-vision cameras would also expand the types of missions

possible.

Additional future work testing and comparing other vision algorithms to the

Förstner interest operator and the pseudo-normalized correlation would benefit from

these performance measurements. For example, there may be key textures that prove

difficult for the JPL algorithms to track accurately for which alternative algorithms do

well. Identifying such textures algorithmically should not prove difficult and could be

integrated as a safety measure in future robotics applications so that the autonomous

vehicle does not enter an area with dangerous textures or switches to other feature

trackers.
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